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Abstract

We use the Eshelby±Stroh formalism to analyze the generalized plane strain quasistatic deformations of an
anisotropic, linear elastic laminated plate. The laminate consists of homogeneous laminae of arbitrary thicknesses.

Computed results are presented for three sample problems to illustrate the e�ect of boundary conditions and of the
span to height ratio. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Pagano (1969, 1970) used the linear elasticity theory to analyze quasistatic deformations of an ortho-
tropic simply supported laminated plate under the assumption of generalized plane strain deformations
and compared his results with those obtained by using the classical plate theory. Meleshko (1997) has
recently reviewed the history and strategies for ®nding analytically displacements and stresses in a
clamped-clamped thin plate of arbitrary length to width ratio. As is clear from Meleshko's paper, there
has been signi®cant interest in ®nding an analytical solution of the nonhomogeneous biharmonic
equation for boundary conditions simulating clamped edges; a biharmonic equation models bending de-
formations of a thin plate. We refer the reader to Meleshko (1997), Kapania and Raciti (1989), Noor
and Burton (1989), Soldatos and Watson (1997), Jones (1975) and Reddy (1997) for a historical perspec-
tive and for a review of various approximate plate theories. As far as we can ascertain, the challenging
problem of ®nding an analytical solution of the linear elasticity equations governing deformations of a
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clamped-clamped plate of arbitrary span to thickness ratio remains unsolved1. Here we present an ana-
lytical solution of the cylindrical bending of a clamped-clamped, anisotropic, linear elastic plate of arbi-
trary span to thickness ratio. As illustrated by results for clamped-free, and clamped-simply supported
laminates, our formulation admits di�erent boundary conditions. Three-dimensional equations of linear
elasticity simpli®ed to the case of generalized plane-strain deformations are solved by the Eshelby±Stroh
formalism. Thus the governing equations are exactly satis®ed, and various constants in the general sol-
ution are determined from the boundary and the continuity conditions at the interfaces. This results in
an in®nite system of equations in in®nitely many unknowns. The truncation of this set of equations
inevitably involves some errors which can be minimized by increasing the number of terms in the series.
The procedure is illustrated by computing results for the cylindrical bending of a plate of arbitrary span
to thickness ratio and either rigidly clamped at both edges or clamped at one end and simply supported
at the other. These results should help others compare approximate plate theories with the analytical sol-
ution and thus assess the accuracy of their proposed plate theories.

2. Formulation of the problem

We use a rectangular Cartesian coordinate system, shown in Fig. 1, to describe the in®nitesimal quasi-
static deformations of an N-layer anisotropic elastic laminate occupying the region [0, L ] � (ÿ1, 1) �
[H (1), H (N + 1)] in the unstressed reference con®guration. Planes x3=H (1), H (2), . . . , H (n ), . . . , H (N + 1)

describe, respectively, the lower bounding surface, the interface between the bottom-most and the adjoin-
ing lamina, the interfaces between abutting laminae, and the top bounding surface. Equations governing

Fig. 1. An N-layer elastic plate.

1 The authors found Srinivas and Rao's (1973) technical note subsequent to the submission of the ®nal manuscript. The tech-

nique presented here is more general than that given by Srinivas and Rao (1973).
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the displacements u=xÿX of a material point X are

sij, j � 0, �i, j � 1, 2, 3�, �1�

sij � Cijkluk, l, �2�

Cijkl � Cjikl � Cklij: �3�
Here x is the present position of the material particle that occupied place X in the reference con®guration,
sij is the Cauchy stress tensor, Cijkl are elastic constants, a comma followed by index j indicates partial
di�erentiation with respect to xj, and a repeated index implies summation over the range of the index.
We will interchangeably use the direct and indicial notation. Material elasticities are assumed to yield a
positive strain energy density for every non-rigid deformation of the body.

The displacement or traction components prescribed on the side surfaces x1=0, L and the bottom
and top surfaces x3=H (1), H (N + 1) are presumed not to depend upon x2, and are speci®ed as follows
(e.g. see Ting, 1996, p. 498)

Il
uu� Il

ssss1 � gl�x3� on x1 � 0,

Ir
uu� Ir

ssss1 � gr�x3� on x1 � L,

Ib
uu� Ib

ssss3 � gb�x1� on x3 � H �1�,

It
uu� It

ssss3 � gt�x1� on x3 � H �N�1�, �4�
where

�sss1�i � si1, �sss3�i � si3: �5�
The functions gl(x3), g

r(x3), g
b(x1) and gt(x1) are known, while Ilu, I

l
s, I

r
u, I

r
s, I

b
u, I

b
s, I

t
u and Its are 3 � 3 di-

agonal matrices whose elements are constants. For most applications, these matrices are diagonal with
entries either zero or one such that

Il
u � Il

s � Ir
u � Ir

s � Ib
u � Ib

s � It
u � It

s � I �6�
with I being the 3 � 3 identity matrix. For example, if the surface x1=0 is rigidly clamped, then Ilu=I,
Ils=0 and gl(x3)=0. However, if it is simply supported, then Ilu=diag[0, 1, 1], Ils=diag[1, 0, 0] and
gl(x3)=0. Thus at the simply supported edge u2=u3=0, s11=0. These boundary conditions are identical
to those used by Pagano (1969) at a simply supported edge. For a laminate on an elastic foundation, the
matrices Ibu, I

b
s, I

t
u and Its may not satisfy (6); such boundary conditions will be studied elsewhere. The

interfaces between di�erent laminae are assumed to be perfectly bonded together. Thus displacements
and surface tractions between the adjoining laminae are taken to be continuous which may be stated as

(u) � 0, (sss3) � 0 on x3 � H �2�, H �3�, . . . , H �N �: �7�
Here (F) denotes the jump in the value of F across an interface.

We postulate that the displacement u is a function of x1 and x3 only and thus the deformations of the
laminate correspond to generalized plane strain state of deformation. This assumption is reasonable
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since the applied loads are independent of x2, the body is of in®nite extent in the x2 direction, and elasti-
cities are constants.

3. Solution of the problem

We use the Eshelby±Stroh (Eshelby et al., 1953; Stroh, 1958) formalism as described by Ting (1996)
to obtain a general solution of Eqs. (1)±(3). Boundary conditions (4) and interface conditions (7) will be
used to ®nd constants in the general solution. We construct a local coordinate system x (n )

1 , x (n )
2 , x (n )

3

with origin at the point where the global x3 axis intersects the bottom surface of the nth lamina; the
local axes are parallel to the global axes. The thickness of the nth lamina is denoted by
h (n )=H (n + 1)ÿH (n ).

3.1. A general solution

In deriving a general solution of Eqs. (1)±(3) for the nth lamina, we drop the superscript n, it being
understood that all material constants and variables belong to this lamina. Assume that

u � af �z�, z � x1 � px3, �8�
where f is an arbitrary analytic function of z, and a and p are possible complex constants to be deter-
mined. Substitution of (8) into (2) and the result into (1) gives

fQ� p�R� RT� � p2Tga � 0, �9�
where Qik=Ci1k1=Qki, Rik=Ci1k3, and Tik=Ci3k3=Tki are 3 � 3 matrices. The positive-de®niteness of
the strain energy density implies that Q and T are positive de®nite matrices. We rewrite the eigenvalue
problem (9) as

Nzzz � pzzz �10�
where

N �
�
ÿTÿ1RT Tÿ1

RTÿ1RT ÿQ ÿRTÿ1

�
, zzz �

�
a
b

�
, �11�

b � ÿ1
p
�Q� pR�a � �RT � pT�a: �12�

Therefore, p is a root of

det�Nÿ pI� � 0, �13�
and then the eigenvector zzz and hence a, b can be determined from (10)±(11). The 6 � 6 matrix N is
called the fundamental elasticity matrix. For the strain energy density to be positive de®nite, p must be
complex (Eshelby et al., 1953). Let ( pa, aa), (a=1, 2, . . . , 6) be eigensolutions of (9) such that

Im� pa� > 0, pa�3 � �pa, aa�3 � Åaa, �a � 1, 2, 3�, �14�
where a bar superimposed on a quantity denotes its complex conjugate. Assuming that p's are distinct, a
general solution of (1)±(3) obtained by superposing six solutions of the form (8) is
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u �
X3
a�1
�aafa�za� � Åaafa�3� �za��, �15�

where fa (a=1, 2, . . . , 6) are arbitrary analytic functions and za=x1+pax3. Substitution from (15) into
(2), and the result into (5) yields

sss1 � ÿ
X3
a�1
� pabaf

0
a�za� � �pa

Åbaf
0
a�3� �za��,

sss3 �
X3
a�1
�baf

0
a�za� � Åbaf

0
a�3� �za��, �16�

where f '(z )=df(z )/dz. Vectors aa and ba are called the Stroh eigenvectors. As noted by Ting (1996),
once the eigenvalues and eigenvectors are determined the elastic constants Cijkl are no longer needed.
Thus ( pa, aa, ba), (a=1, 2, 3) although complex can be considered as material constants that determine
the generalized plane strain state of deformation.

The general solution (15)±(16) is valid when N is simple or semisimple, that is, the eigenvalues pa are
distinct or, if not, there exist six independent eigenvectors zzza. N is nonsemisimple for isotropic and cer-
tain anisotropic materials. Ting (1982) has discussed how to modify the general solution for nonsemisim-
ple N.

3.2. A series solution

Even though (15) satis®es the equilibrium Eqs. (1)±(3) for all choices of the analytic functions fa, a
choice based on the geometry of the problem and boundary conditions can simplify the algebraic details.
We select for the nth lamina

f �n�a �z�n�a � � d �n�a � z�n�a v�n�a � �z�n�a �2w�n�a �
X1
k�1
fq�n�ka exp�l�n�ka z�n�a � � r

�n�
ka exp�l�n�ka � p�n�a h�n� ÿ z�n�a ��g

�
X1
m�1
fs�n�ma exp�Z�n�maz

�n�
ma� � t�n�ma exp�Z�n�ma�Lÿ z�n�a ��g, 0Rx

�n�
3 Rh�n�,

f
�n�
a�3� �z �n�a � � f

�n�
a �z�n�a �, �17�

where z�n�a �x �n�1 �p�n�a x
�n�
3 ,

l�n�ka �
kpi
L

, Z�n�ma � ÿ
mpi

p
�n�
a h�n�

, i �
�������
ÿ1
p

: �18�

The unknowns d (n )
a and w (n )

a are assumed to be real while v (n )a , q (n )
ka , r (n )ka , s (n )ma and t (n )ma are complex;

these will be determined from the boundary conditions. Note that each term in series (17) is an analyti-
cal function of z (n )a . The function exp(l (n )

ka z
(n )
a ) varies sinusoidally on the surface x (n )

3 =0 and decays ex-
ponentially in the x (n )

3 -direction. With increasing k, higher harmonics are introduced on the surface
x (n )
3 =0 accompanied by steeper exponential decay in the x (n )

3 -direction. Similarly, functions multiplying
r (n )ka , s (n )ma and t (n )ma vary sinusoidally on surfaces x (n )

3 =h (n ), x (n )
1 =0 and x (n )

1 =L, respectively. The
inequality (14)1 ensures that all functions decay exponentially towards the interior of the layer. The poly-
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nomial terms in z (n )a are introduced to play the role of the constant in the Fourier series expansion on
the four bounding surfaces. The choice f (n )a+3(z

-(n )
a ) equal to the complex conjugate of f (n )a (z (n )a ) ensures

that displacements and stresses are real.
Pagano (1969) studied quasistatic deformations of a simply supported laminate subjected to a sinusoi-

dal load on the upper and/or lower long faces. His series solution identically satis®es the boundary con-
ditions at the edges. We have included additional terms, represented by the in®nite series with index m
in (17), to satisfy all types of boundary conditions and to capture boundary layer e�ects, if any, near the
edges. Both Pagano's series solution and our solution (17) seem to be complete; neither he proved it nor
we prove this very challenging problem. Substitution from (17) into (15) and (16) results in the following
expressions

u�n� � A�n�
(

d�n� � hz�n�� iv�n� � h�z�n�� �2iw�n� �
X1
k�1
�h exp�b�n�k� �iq�n�k � h exp�g�n�k� �ir�n�k �

�
X1
m�1
�h exp�d�n�m��is�n�m � h exp�x�n�m��it�n�m �

)
� conjugate,

�19�

sss�n�1 � B�n�
(
ÿ hp�n�� iv�n� ÿ h2p�n�� z�n�� iw�n� �

X1
k�1
�ÿhl�n�k�p�n�� exp�b�n�k� �iq�n�k � hl�n�k�p�n�� exp�g�n�k� �ir�n�k �

�
X1
m�1
�ÿhZ�n�m�p�n�� exp�d�n�m��is�n�m � hZ�n�m�p�n�� exp�x�n�m��it�n�m �

)
� conjugate,

�20�

sss�n�3 � B�n�
(

v�n� � h2z�n�� iw�n� �
X1
k�1
�hl�n�k� exp�b�n�k� �iq�n�k ÿ hl�n�k� exp�g�n�k� �ir�n�k �

�
X1
m�1
�hZ�n�m� exp�d�n�m��is�n�m ÿ hZ�n�m� exp�x�n�m��it�n�m �

)
� conjugate,

�21�

where

b�n�ka � l�n�ka z
�n�
a , g�n�ka � l�n�ka � p�n�a h�n� ÿ z�n�a �,

d�n�ma � Z�n�maz
�n�
a , x�n�ma � Z�n�ma�Lÿ z�n�a �,

A�n� � �a�n�1 , a
�n�
2 , a

�n�
3 �, B�n� � �b�n�1 , b

�n�
2 , b

�n�
3 �,

hf�c�Z�i � diag�f1c1Z1, f2c2Z2, f3c3Z3�,

�d�n��a � d �n�a , a � 1, 2, 3: �22�
The other unknowns v(n), w(n), q(n )k , r(n )k , s(n )m and t(n )m are de®ned in a way similar to d(n ), and conjugate
stands for the complex conjugate of the explicity stated terms.
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4. Satisfaction of boundary and interface conditions

The boundary conditions (4) on the surfaces x1=0, L; x3=H (1), H (N + 1), and continuity conditions
(7) on the surface x3=H (2), H (3), . . . , H (N ) are satis®ed by the classical Fourier series method, resulting
in a system of linear equations for the unknown coe�cients d(n ), v(n ), w(n ), q(n )k ,r(n )k , s(n )m and t(n )m .

On the top surface x (N )
3 =h(N ), we extend the component functions in (19)±(21) over the interval (ÿL,

0) in the x1-direction. The sinusoidal functions multiplying q(N )
k and r(N )

k are extended without modi®-
cation since they form the basis functions on this surface. The polynomial and exponential functions cor-
responding to d(N ), v(N ), w(N ) and s(N )

m , t(N )
m , respectively, are extended as even functions. The prescribed

function gt(x1) is suitably extended. It should be noted that these extensions are not unique. We multiply
(4)4 by exp( jpix1/L ) and integrate with respect to x1 from ÿL to L to obtain

�L
ÿL
fIt

uu�N ��x1, h
�N �� � It

ssss
�N �
3 �x1, h

�N �� ÿ gt�x1�g exp

�
j
ipx1

L

�
dx1 � 0, j � 0, 1, 2, . . . �23�

The same procedure is repeated for the boundary condition (4)3 on the bottom surface and the interface
conditions (7), leading to the following set of equations

�L
ÿL
fIb

uu�1��x1, 0� � Ib
ssss
�1�
3 �x1, 0� ÿ gb�x1�g exp

�
j
ipx1

L

�
dx1 � 0, j � 0, 1, 2, . . . ,

�L
ÿL
fu�n��x 1, h

�n�� ÿ u�n�1��x 1, 0�g exp

�
j
ipx 1

L

�
dx 1 � 0,�L

ÿL
fsss�n�3 �x1, h

�n�� ÿ sss�n�1�3 �x 1, 0�g exp

�
j
ipx 1

L

�
dx 1 � 0:

9>>>>=>>>>; n � 1, 2, . . . , Nÿ 1, j � 0, 1, 2, . . . �24�

Similarly, for the side surfaces x (n )
1 =0, L, the functions are extended over the interval (ÿh (n ), 0) in the

x (n )
3 direction. The integrations are performed with respect to x (n )

3 from ÿh (n ) to h (n ) after multiplying
(4)1,2 by exp( jpix (n )

3 /h (n )). We thus obtain

�h�n�
ÿh�n�
fIl

uu�n��0, x �n�3 � � Il
ssss
�n�
1 �0, x �n�3 � ÿ gl�x �n�3 �g exp

�
j
ipx �n�3
h�n�

�
dx
�n�
3 � 0,

�h�n�
ÿh�n�
fIr

uu�n��L, x �n�3 � � Ir
ssss
�n�
1 �L, x �n�3 � ÿ gr�x �n�3 �g exp

�
j
ipx �n�3
h�n�

�
dx
�n�
3 � 0:

9>>>>>=>>>>>;
n � 1, 2, . . . , N,
j � 0, 1, 2, . . .

�25�

Substitution from (19)±(21) into (23)±(25) yields a non-standard in®nite set of linear algebraic equations
for the unknown coe�cients d(n ), v(n ), w(n ), q(n )k , r(n )k , s(n )m and t(n )m , (n = 1, 2, . . . , N; k= 1, 2, . . . ;
m= 1, 2, . . . ). A general theory for the resulting in®nite system of equations does not exist. However,
reasonably accurate solutions may be obtained by truncating the ®rst and second series in (17) to K and
M (n ) terms, respectively. In this case, j is truncated to K integrations in (23) and (24) and M (n ) inte-
grations in (25). By equating the real and imaginary parts on both sides of these equations, we obtain a
system of
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12�KN�
XN
n�1

M�n� �N �

real equations in the same number of real unknowns. These equations when written as Kc=F where c is
the column vector of unknowns reveals that K is a sparse matrix. The choice of K and M (n ) will deter-
mine the period of the largest harmonic in the set of basis functions on the surfaces x (n )

3 =0, h(n) and
x (n )
1 =0, L, respectively. In order to maintain approximately the same period of the largest harmonic on

all interfaces and boundaries, we choose

M�n� � Ceil

�
K
h�n�

L

�
, �26�

where Ceil( y ) gives the smallest integer greater than or equal to y. Thus the size of the matrix K will
solely depend on the choice of K. Kantorovich and Krylov (1958) and Meleshko (1997) have discussed
issues related to the solution of an in®nite system of linear algebraic equations. The global system of
equations needs to be modi®ed when some or all components of the displacement are not prescribed
anywhere on the boundary. Consider the case of a plate subjected to traction boundary condition on the
top and bottom surfaces and boundary conditions on side surfaces speci®ed by Ilu=Iru=diag[0, 1, 1]. In
this case the displacement u1 is not speci®ed on any part of the boundary. An example of such boundary
conditions is a simply supported plate. The condition of static equilibrium requires that the ®rst com-
ponent of the prescribed loading satisfy

�L
0

gt
1�x1� dx1 �

�L
0

gb
1�x1� dx1 �

XN
n�1

�h�n�
0

�gl
1�x �n�3 � ÿ gr

1�x �n�3 �� dx �n�3 : �27�

This condition in conjunction with the integral form of the equilibrium equations shows that the ®rst
component of the vector Eqs. (23)±(25) corresponding to j = 0 are linearly dependent. In order to
obtain a unique solution to the problem, one of these equations has to be replaced by an equation that
speci®es the displacement u1 at an arbitrary point in the domain, say u1(L/2, H/2)=0.

It should be noted from the structure of the solution (19)±(21) that the component functions decrease
exponentially from the boundary/interfaces into the interior of the nth lamina. By truncating the series,
we have e�ectively ignored coe�cients with su�ces greater than a particular value and approximated
the coe�cients which have small su�ces. Due to the rapid decay of component functions associated
with large su�ces, the truncation of the series will not greatly in¯uence the solution at the interior
points. A larger value of K will give a more accurate solution at points close to the boundary and inter-
faces. It should also be noted that the coe�cients q(n )k and r(n )k in (20)±(21) are multiplied by l (n )

k� while
s(n )m and t(n )m are multiplied by Z (n)

m� , thus indicating that the stresses will converge more slowly than the
displacements.

Once the unknown coe�cients are determined by satisfying the boundary and interface conditions, the
displacements and stresses in each lamina are obtained from (19)±(21). Then the stress component s22
missing in (20) and (21) is determined from (2). Nonzero values of coe�cients s(n )m and t(n )m would indi-
cate the existence of boundary layers near the edges of the laminate.

The solution of the problem could be singular at the four points where the top and bottom surfaces
intersect the left and right edges, and also at points where the interfaces intersect the left and right edges
x1=0, L (Ting, 1996). The asymptotic solution at these points can be analyzed by assuming fa (za) to be
proportional to z d+1

a , where (x1, x3) is measured from the point and d is an eigenvalue to be determined.
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The stress is then proportional to z da. The satisfaction of the homogeneous boundary and interface con-
ditions results in an eigenvalue problem for d (Ting, 1996; Ting and Chou, 1981; Ting, 1986). The singu-
lar solution with an unknown multiplicative constant is then added to (17). When we attempted to
determine the coe�cients of the singular solutions by using the Least Squares method on the boundaries,
the resulting set of linear equations became ill-conditioned and the coe�cients behaved erratically as the
number of terms in the series was increased. A similar problem was also encountered by Benthem (1963)
when studying the deformations of a clamped semi-in®nite strip loaded in tension. This di�culty was
overcome by Gregory and Gladwell (1982) who used a projection method to incorporate the singular
solution. The stress singularity and the stress intensity factor at the corners of a clamped plate have
been evaluated by Tullini and Savoia (1995) by starting with an eigenvalue expansion of the edge pro-
blem. In the results discussed below, terms explicitly representing a singular solution have not been
included.

5. Examples

For all the examples, we consider layers of unidirectional ®ber reinforced material, model each layer
as orthotropic and assign to it the following sti�ness properties.

EL=ET � 25, GLT=ET � 0:5, GTT=ET � 0:2, nLT � nTT � 0:25, �28�
where E is the Young's modulus, G the shear modulus, n the Poisson's ratio and subscripts L and T in-
dicate, respectively, directions parallel and perpendicular to the ®bers. Such properties are typical of a
high modulus graphite-epoxy composite. For values given in (28) and ®bers aligned along the x1-direc-
tion, the nonzero components of the elasticity matrix Cijkl are

C1111 � 25:168ET, C2222 � C3333 � 1:071ET,

C1122 � C1133 � 0:336ET, C2233 � 0:271ET,

C2323 � 0:2ET, C3131 � C1212 � 0:5ET: �29�
We choose K= 400 in order to obtain good accuracy close to the boundary and the interfaces.

We do not present results for simply supported orthotropic plates subjected to tractions on the top
and bottom surfaces since they are identical to those of Pagano (1969). His solution reveals that the
boundary and interface conditions can be satis®ed by using only terms corresponding to k in (17). For a
simply supported plate, coe�cients s(n )m and t(n )m are found to be zero. As pointed out above, the vanish-
ing of these coe�cients implies the absence of boundary layers near the edges of a simply supported
orthotropic plate. In such cases, the in®nite system of Eqs. (23)±(25) will be uncoupled for each j. Thus
the solution for the in®nite system is obtained by solving a ®nite system for each j. This explains why it
is `easier' to obtain a solution for simply supported edges than when the edges are clamped.

5.1. Clamped-clamped laminate

The ®rst example concerns a single layered homogeneous composite plate, clamped on both the side
surfaces x1=0, L and subjected to traction boundary condition on the top and bottom surfaces. The
®bers are along the x1 direction. The following sinusoidal distribution of traction is applied on the top
surface while the bottom surface is traction free
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gt�x1� � q0

�
0, 0, ÿ sin

px1

L

�T

, gb�x1� � 0: �30�

Figs. 2 and 3 show the distribution of the longitudinal and transverse shear stress over the thickness of
a thick laminate with L/H = 4, where H equals the thickness of the laminate. The oscillatory behavior
of the stresses observed at the clamped surface is due to the truncation of the series and the slow conver-
gence of the stresses close to the boundaries. The amplitude of the oscillation decreases when K is
increased. The magnitude of the longitudinal stress on the top surface at points away from the clamped
edges is slightly higher than that at corresponding points on the bottom surface. Right at the corners of
the clamped edges, the longitudinal stress is ®nite because of the truncation of the in®nite series. As
shown by Tullini and Savoia (1995) and Gregory and Gladwell (1982), the longitudinal stress at the cor-
ners of a clamped end is unbounded. If we disregard the oscillations, due to the Gibbs phenomenon, in

Fig. 2. Longitudinal stress distribution on four sections for a clamped-clamped homogeneous plate (L/H = 4).

Fig. 3. Transverse shear stress distribution on four sections for a clamped-clamped homogeneous plate (L/H = 4).
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the values of s31 at points on x1/L= 0, or 1, then the absolute value of the transverse shear stress
attains its maximum at a point in the upper half of the plate. This asymmetry in the stresses can be
attributed to the external loading being applied to the top surface while the bottom surface is traction
free. At the clamped ends the transverse shear stress is almost uniform through the thickness of the
plate. The thicknesses of the boundary layers at the top and bottom surfaces decrease with an increase
in the distance of the cross-section from the midplane.

The classical laminated plate theory (CLPT) solution for the transverse displacement uÄ3 and the longi-
tudinal stress ~s11 is

~u3�x1, x3� � ÿ12�1ÿ nLTnTL�q0L4

25ETH 3p4

�
p
x1

L

�
x1

L
ÿ 1

�
� sin

px1

L

�
, nTL � nLTET=EL,

Fig. 4. Axial displacement distribution on the section x1=L/4 for a clamped-clamped homogeneous plate for four values of L/H.

Fig. 5. De¯ected shapes of the mid-surface of a clamped-clamped homogeneous plate for four values of L/H.
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~s11�x1, x3� � 12q0L
2

H 2p3

�
2ÿ p sin

px1

L

��
x3

H
ÿ 1

2

�
:

The transverse shear and normal stresses are assumed to be zero in the CLPT; however they may be
computed by integrating the three-dimensional equilibrium equations of elasticity after ~s11, ~s22 and ~s12

have been found. The transverse stresses thus obtained are

~s13�x1, x3� � ÿ6Lq0pH

�
x3

H
ÿ x2

3

H 2

�
cos

px1

L
,

~s33�x1, x3� � ÿq0x
2
3

H 2

�
3ÿ 2x3

H

�
sin

px1

L
:

The through-thickness variation of the normalized displacement u1 plotted in Fig. 4 shows an a�ne vari-
ation for span-to-depth ratios of 20 or more. The normalized midplane lateral displacement u3 (cf. Fig.
5) shows that for large span-to-depth ratios the slope of the deformed midplane at the clamped edge

Table 1

Transverse de¯ection, longitudinal stress, transverse shear stress, transverse normal stress and extension of the normal for increas-

ing span-to-thickness ratios

L
H

100ETH
3

q0L4 u3�L2 , H2 � H 2

q0L2 s11�L2 ,H � H
q0L

s31�L4 , H2 � 1
q0
s33�L2 , H2 � 10ET

q0H
�u3�L2 ,H � ÿ u3�L2 ,0��

4 ÿ1.4946 ÿ0.4887 ÿ0.2765 ÿ0.490 ÿ4.6238
6 ÿ0.7412 ÿ0.3532 ÿ0.3011 ÿ0.497 ÿ4.6608
8 ÿ0.4688 ÿ0.2987 ÿ0.3160 ÿ0.499 ÿ4.6701
10 ÿ0.3402 ÿ0.2716 ÿ0.3246 ÿ0.500 ÿ4.6731
15 ÿ0.2111 ÿ0.2437 ÿ0.3333 ÿ0.500 ÿ4.6747
20 ÿ0.1652 ÿ0.2338 ÿ0.3356 ÿ0.500 ÿ4.6750
30 ÿ0.1322 ÿ0.2266 ÿ0.3368 ÿ0.500 ÿ4.6750
40 ÿ0.1205 ÿ0.2241 ÿ0.3372 ÿ0.500 ÿ4.6750
60 ÿ0.1122 ÿ0.2223 ÿ0.3374 ÿ0.500 ÿ4.6750
CLPT ÿ0.1055 ÿ0.2209 ÿ0.3376 ÿ0.500 ±

Fig. 6. Normal stress distribution at x1=L/2 for a clamped-clamped homogeneous plate for four values of L/H.
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approaches zero. These results support the assumptions of laminated plate theories for thin plates. For
thick plates the slope at the clamped edge is no longer small due to the e�ect of transverse shear defor-
mation. Note that the CLPT predicts the normalized midplane lateral displacement at the plate centroid
to be ÿ0.1055 for all values of L/H. Table 1 lists, for various span-to-thickness ratios, the numerical
values of normalized transverse de¯ection u3 at the center of the plate, the normalized longitudinal stress
at (L/2, H ), the nondimensional transverse shear stress at (L/4, H/2), the nondimensional transverse nor-
mal stress at (L/2, H/2) and the normalized elongation of the normal to the midsurface of the plate. For
thin plates the transverse de¯ection and values of the stress components asymptotically approach those
given by the CLPT theory. These results are similar to those of Pagano (1969) for simply supported
laminated plates. The classical beam and thin plate theories assume inextensibility in the transverse
direction; e.g. see Reddy (1997), Jones (1975). Table 1 and results plotted in Figs. 4 and 5 also reveal
that the elongation of the normal at the mid-span is O(q0H/ET) and the displacements u1 and u3 are
O(q0L

3/ETH
2) and O(q0L

4/ETH
3), respectively. Figs. 6 and 7 show that the through-thickness normal

and shear stresses approach the a�ne and parabolic distributions predicted by the CLPT as L/H 41.

Fig. 7. Transverse shear stress distribution at x1=L/4 for a clamped-clamped homogeneous plate for four values of L/H.

Fig. 8. Normal stress distribution on three sections for a cantilever homogeneous plate (L/H = 2).
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Soldatos and Watson (1997) have attempted to solve the same problem with an improved higher
order theory. Their theory incorporates the through-thickness shape functions obtained from the exact
solution of the corresponding simply supported plate. The boundary conditions on the edges are applied
in an average sense like in other plate theories. These boundary conditions lead to inaccurate stress dis-
tributions at the clamped edges. At the edge x1=0, their approximate solution yields a positive value for
the shear stress on the lower half of the plate and regions of highly negative normal stresses in the upper
half, in contrast to our results. Similarly, their results do not compare well with our through-thickness
distributions for the displacement u1 at any location along the span.

5.2. Cantilever laminate

We study deformations of a single layered homogeneous cantilever plate clamped at the surface x1=0,
traction free at x1=L, and subjected to uniform normal loads on the top and bottom surfaces given by
g t
3(x1)=ÿq0/2, g b

3(x1)=q0/2. The ®bers are aligned along the x1 direction. The span to thickness ratio,

Fig. 9. Transverse shear stress distribution on four sections for a cantilever homogeneous plate (L/H = 2).

Fig. 10. Transverse normal stress distribution on four sections for a cantilever homogeneous plate (L/H= 2).
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L/H, is taken as 2, which characterizes a very thick plate. The through-thickness distribution of the
longitudinal stress and the transverse shear stress shown in Figs. 8 and 9 agree qualitatively with the
results of Savoia and Tullini (1996). Their theory is based on the assumptions of transverse inextensibil-
ity and plane stress. They have also compared their results with that obtained by the Finite Element
Analysis. Their results for the transverse normal stress s33 are inaccurate due to the assumption of trans-
verse inextensibility while the distributions shown in Fig. 10 are in agreement with those obtained by the
Finite Element Analysis under the assumption of plane strain deformations. It is clear from the results
plotted in Fig. 9 that near the free end, x1/L= 0.95, the sign of the transverse shear stress at points
near the top and bottom surfaces is opposite of that given by the classical beam theory which is not
expected to give good results for span to thickness ratio of 2.

Near the clamped edge, the transverse normal stress exhibits boundary layer e�ects adjacent to the
top and bottom surfaces and is essentially negligible through most of the thickness.

5.3. Clamped-simply supported laminate

The ®nal example concerns a three-layer composite laminate. The orientations of the ®bers with
respect to the x1 axis are 08, 908 and ÿ458 in the lower, middle and top layers respectively. The thick-
nesses of the three layers are

�h�1�, h�2�, h�3�� � �0:3, 0:4, 0:3�H, and L=H � 5: �31�
The surface x1=0 is clamped while the surface x1=L is simply supported. The top surface is subjected
to a discontinuous normal traction and the bottom surface to a constant shear traction given by

gt�x1� � q0

"
0, 0, ÿH

�
x1 ÿ L

4

�
�H

�
x1 ÿ 3L

4

�#T

,

gb�x1� � q0 �ÿ0:5, 0, 0�T, �32�
where H is the Heaviside step function. The highly anisotropic nature of the material, the small value

Fig. 11. Variation on four planes of transverse normal stress for a clamped-simply supported three-layer laminate.
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of L/H for the plate, and the discontinuous traction on the top surface in conjunction with the clamped
boundary condition are considered a severe test of the reliability of the present method.

The distribution of the transverse normal stress, on di�erent horizontal planes, shown in Fig. 11 indi-
cates that the traction boundary conditions on the top and bottom surfaces are well satis®ed. One sees
Gibbs phenomenon near the clamped end, and at points where the prescribed traction distribution is dis-
continuous. The distribution of the longitudinal stress on horizontal planes x3/H = 1, 0.75, 0.25 and 0
plotted in Fig. 12 depicts the familiar boundary layer on the top and bottom surfaces at the clamped
edge. It also exhibits jumps on the top surface at x1=L/4, and 3L/4 which are points of discontinuity of
the prescribed transverse normal traction. The through thickness distributions of the longitudinal stress
s11 are shown in Fig. 13. The distribution of the longitudinal stress on horizontal planes equidistant
from the midsurface is not symmetrical. On the top surface the longitudinal stress is discontinuous at
the two points where the applied normal traction jumps from zero to a ®nite value, but on the bottom
surface it is continuous. The shear stress distributions are shown in Figs. 14 and 15, and Fig. 16 gives

Fig. 12. Variation of longitudinal stress on four planes for a clamped-simply supported three-layer laminate.

Fig. 13. Distribution of the longitudinal stress on four sections for a clamped-simply supported three-layer laminate.
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the through-thickness distributions of the axial displacement at four sections. The results plotted in these
®gures clearly show that the boundary and interface conditions are very well satis®ed. The di�erent
orientations of the ®bers near the top and bottom surfaces strongly in¯uence the through-thickness dis-
tribution of the longitudinal and transverse shear stresses.

6. Conclusions

We have used the Eshelby±Stroh formalism to study the generalized plane strain quasistatic defor-
mations of a linear elastic anisotropic laminated plate with either both edges clamped or one edge
clamped and the other simply supported or one edge clamped and the other free. The three-dimensional
equations of elastostatics are exactly satis®ed at every point of the body. However, the boundary and
interface continuity conditions are satis®ed in the sense of Fourier series. When su�cient (400) terms are
kept in the analytical series solution, these boundary and interface continuity conditions are also well

Fig. 14. Transverse shear stress distribution on four sections for a clamped-simply supported three-layer laminate.

Fig. 15. Distribution of transverse shear stress s32 on four sections for a clamped-simply supported three-layer laminate.
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satis®ed at every point on these surfaces. The solution is valid for all aspect ratios of the plate, and exhi-

bits boundary layers near the clamped edges, top and bottom surfaces and interfaces between di�erent

layers. It is found that even for a single layer orthotropic plate with span to thickness ratio of 10, the

slope of deformed midplane is nonzero at the clamped edges. For a distributed transverse load applied

on the top surface of the plate, the longitudinal and transverse shear stresses are found to be asymmetric

about the midsurface of the plate. Also, the change in the plate thickness at the midspan is of the order

of q0H/ET where q0 is the intensity of the distributed load, H the initial thickness of the plate and ET

the transverse modulus. Only for thin plates, the through thickness variation of the longitudinal stress is

a�ne and that of the transverse shear stress parabolic. Our results for thin plates agree with those of the

classical laminated plate theory.

For a cantilever plate with span to thickness ratio of two and loaded by uniformly distributed loads

of the same intensity on the top and bottom surfaces, the through-thickness distribution of the trans-

verse shear stress is parabolic at sections near the midspan. At sections near the free end, the sign of the

transverse shear stress near the top and bottom surfaces is opposite of that near the midsurface; the lat-

ter is of the same sign as that given by the classical beam theory. On a section close to the clamped end

the transverse shear stress is nearly uniform through the thickness except at points in the vicinity of the

top and bottom surfaces where it exhibits a boundary layer e�ect. At the section adjacent to the clamped

end, the transverse normal stress also shows a boundary layer e�ect, is almost zero through most of the

thickness, and approaches the prescribed value at the top and bottom surfaces.

We have also computed stresses and displacements in a composite plate of span to thickness ratio

equal to 5, clamped at one end and simply supported at the other end, and loaded by a uniformly dis-

tributed transverse load on a part of the upper surface and uniformly distributed tangential tractions on

the lower surface. The computed results show that the transverse shear stresses are continuous at the

interfaces between adjoining laminae, and the traction boundary conditions are well satis®ed on the top

and bottom surfaces. Because of the di�erent boundary conditions on the two edges, the deformations

of plane sections perpendicular to the midsurface of the plate and located symmetrically about the mid-

span are di�erent. Also, the di�erent orientation of ®bers near the top and bottom surfaces strongly in-

¯uences the through-thickness variation of the transverse shear stresses.

The results presented herein should help check the validity of various approximate plate theories.

Fig. 16. Distribution of the axial displacement on four sections for a clamped-simply supported three-layer laminate.
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